
How to Make Your Oracle APEX Application Secure

© LogicaCMG 2006. All rights reserved

Peter Lorenzen

Technology Manager

WM-data Denmark

a LogicaCMG Company

peloz@wmdata.com

1

Presentation

• Target audience is developers

• Focus is on how to prevent hackers from gaining access

• In terms of what I believe an APEX developer in a small shop ,
without a fulltime security expert or DBA, should know

• More an overview of security threats and countermeasures
than a thorough analysis

• Point you to resources with more information about the different subjects

• Assumption: An application that

– is accessed from the Internet

– contains valuable and secret information

2

APEX Project References

• The Danish Department of Prisons and Probation uses APEX in
the process of deciding in which facility a client should serve

• RTX Telecom uses APEX to control DECT cordless telephones in
Rumania

• Naturgas Fyn is a provider of natural gas in Denmark. We have
developed a system that calculates the amount of gas that is
needed from each gas provider the following day

3

Agenda

• Intro

• Architecture

– HTTP Servers

– Choosing an Architecture

• Hardening the Architecture

– Patching– Patching

– Hardening the Database

– Hardening the HTTP Web Server

• Specific Threats

– Cross-Site Scripting

– SQL Injection

• Hardening APEX

– Miscellaneous

• Conclusion
4

Intro – Security, what security?

A security company estimates that there are a 71% likelihood that a Website
has a Cross-Site Scripting vulnerability and 20% for a SQL Injection

5

Intro

• Think about security from the beginning of a project

• Plan security – Architecture etc.

• Make sure people knows the security basic

• Have people that is responsible for security, patching etc.

6

APEX is secure, developers
makes it insecure ☺

APEX Components

Architecture

• Oracle 9i/10g/11g Database
• Oracle Express Edition

• Oracle HTTP Server (Database Companion CD)
• Oracle HTTP Server (Oracle Application Server)
• Oracle XML DB HTTP Server

HTTP

server

7

There is such a
thing as too cheap

Architecture

Oracle HTTP Server
(OHS)

Oracle XML DB HTTP Server

Technology Apache 1.3.x Developed by Oracle. Builds

�

Which HTTP Server to Use?

Technology Apache 1.3.x Developed by Oracle. Builds
on the Oracle Shared Server
architecture

Database “connection” mod_plsql Embedded PL/SQL Gateway

8

Use known and
proven technology

Architecture

Minimum Only HTTP communication

"Security is an architecture, not an appliance” - Art Wittman

mod_proxy

9

Proxy HTTP Server

– Standard Apache 1.3/2.0 HTTP Server

– OHS based on an Apache 2.0.x HTTP Server

Database +
HTTP server

Architecture

Using Secure Sockets Layer (SSL) encryption

SSL?

10

Security measures should match the risk
and the value of the secured application/data

Database +
HTTP server

Hardening the Architecture

• Patch, Patch, Patch

– Critical Patch Update (CPU)

– Oracle Security Alerts

– Remember regular Patch Sets

– The Oracle HTTP Server – Patches from Oracle

– Standard Apache HTTP Servers – Patches from Apache– Standard Apache HTTP Servers – Patches from Apache

– Remember the OS

– Patching can be difficult!

11

Patching should be part
of the daily operations

Hardening the Architecture

• Hardening the Database

– Do not use the free Express Edition (XE) database

• The simple stuff

– Follow the principle of least privilege

– Lock or remove unused users

– Use sensible passwords– Use sensible passwords

– SYS password != SYSTEM password

• Must-reads

– Oracle Database Security Checklist

– “Hacking and Securing Oracle - A Guide To Oracle Security”

by Pete Finnigan

• A good place to start

– Oracles Project Lockdown

12

Use checklists and
adopt best practices

Hardening the Architecture

• Hardening the Apache HTTP Web Server

– Remove pre-loaded modules

– Remove pre-installed content

– Don’t publicize names/versions of your running software

ServerSignature Off (Removes server information from error pages)

• Comprehensive Checklists

– “Securing Oracle Application Server”

by Caleb Sima

– “Hardening Oracle Application Server 9i and 10g”

by Alexander Kornbrust

ServerSignature Off (Removes server information from error pages)

ServerTokens Prod (Removes server version from the HTTP header)

13

Give away as little as
possible about yourself

Specific Threats - Cross-Site Scripting (XSS)

• Simple definition

– Attacker injects JavaScript in an application in order to attack other users

– Ex. Stealing data, Hijacking session token, Performing unauthorized actions

• Many types of XSS

– Stored XSS (JavaScript in database)

– Reflected XSS (Embedded JavaScript in URL request)

– Stored XSS in uploaded files (HTML, Text file with .jpg extension, etc.)

• XSS is often not that dangerous on it’s own, but combined with bugs in a

browser, a virus or a worm it can be serious

14

Specific Threats - Cross-Site Scripting

• Quick example in APEX

– Create a Form on a table of type “Form on a Table with Report”

– Run the Report and create a row with this data in a VARCHAR2 column

– When you press Create and branch back to the Report the JavaScript is run

Test<script>alert(‘Hello world’);</script>

15

– When you press Create and branch back to the Report the JavaScript is run

Specific Threats - Cross-Site Scripting

• Fix: Escape Special characters like <,>,&

• Change Display as

Standard Report Column

Display as text (escape special characters, does not save state)

16

Specific Threats - Cross-Site Scripting

• Escaping is the weapon of choice when dealing with XSS threats

• Escape all output

• The page source will now look like this

• In PL/SQL use this function: HTF.escape_sc

Test<script>alert('Hello world');</script>

• In PL/SQL use this function: HTF.escape_sc

• Read about safe items in the User’s Guide

17

Don’t trust any input from
the end-user

Specific Threats - SQL Injection

• Definition

– An attacker inputs extra SQL in an application

• Simple example in APEX

– Report based on a SQL Query

select job, sal from emp where ename = '&P1_ENAME.'

– The P1_ENAME item is input by a user

– If an user input the text below all rows will be shown

– The fix for this specific situation is to use bind variables

qwerty' or 1=1--

select job, sal from emp where ename = :P1_ENAME

18

Specific Threats - SQL Injection

• Take care when an end-user can input text that is used in DML

• Watch out for concatenation of user input in DML

• Take care when using Dynamic SQL

DBMS_SQL
or
Native Dynamic SQL e.g. Execute Immediate

• Validate end-user input:

– Check for max. length

– Check for parentheses, comments (--, /* */)

– Validate the input against a table

Native Dynamic SQL e.g. Execute Immediate

19

Always use Bind Variables!

Hardening APEX

• Session State Protection (SSP)

• APEX URL

• APEX URL with SSP checksum

f?p=101:7:2564092426426::::P7_USER_ID:99

42

• Use APEX_UTIL.prepare_url to generate checksum from PL/SQL

• SSP should not be the only security measure!

– Also check in the database

• Via triggers

• Via a view layer and instead of triggers

• Virtual Private Database (VPD)

f?p=101:7:2564092426426::::P7_USER_ID:99&cs=38D6164631F9754257F3

20

Always use Session State Protection

Hardening APEX

• Security Options in the Administration Services

(Options for you production system)

– Disable Administrator Login

– Disable Workspace Login

– Restrict Access by IP Address

– Workspace Password Policy

• Version 3.1 will contain a Runtime Installation that probably will alleviate
most of this

• Miscellaneous

– Debugging should be disabled

– Build Status should be Run Application Only

– Workspace Password Policy

21

Lock down your production system

Hardening APEX

• Obfuscate the APEX_PUBLIC_USER Password

– Use the dadTool.pl script located in ORACLE_HOME\Apache\modplsql\conf

– If you use marvel.conf rename it temporarily to dads.conf

22

Miscellaneous

• Don’t trust any input from the end-user

– All JavaScript and HTML can be changed

– For examples try the Web Developer or the Firebug Firefox add-on

– Do all validations in the database

Example using the Web Developer Firefox add-on

23

Example using the Web Developer Firefox add-on

Secure Sockets Layer (SSL) encryption

• Check How-to’s on the APEX Wiki

– Using SSL with the Oracle HTTP Server

– Using SSL with the Oracle XML DB HTTP Server

24

Conclusion

• Security is important

• Don’t think of security only in APEX but for your whole architecture

• Create a sensible architecture

• Use SSL encryption

• Patch everything

• Harden the database and the Apache HTTP Server• Harden the database and the Apache HTTP Server

• Escape output to prevent Cross-Site Scripting

• Validate input to prevent SQL Injection etc.

• Use Session State Protection

• Lock down your production system

• Obfuscate the APEX_PUBLIC_USER password

• Don’t trust JavaScript validations, hidden items, check boxes, etc.

25

How to Make Your Oracle APEX Application Secure

Questions?

For More Information

• CPU and Security Alerts
http://tinyurl.com/5dhto

• Oracle Database Security Checklist

Contact Information

Peter Lorenzen
peloz@wmdata.com

26

• Oracle Database Security Checklist
http://tinyurl.com/ytake2

• “Hacking and Securing Oracle - A Guide To Oracle Sec urity” by Pete Finnigan
http://tinyurl.com/28jrt7

• Oracles Project Lockdown
http://tinyurl.com/24s4nf

• “Securing Oracle Application Server” by Caleb Sima
http://tinyurl.com/2ey89a

• “Hardening Oracle Application Server 9i and 10g” by Alexander Kornbrust
http://tinyurl.com/2x5h3h

• APEX Wiki
http://tinyurl.com/2zosrp

