
How to Make Your Oracle APEX Application Secure

© LogicaCMG 2006. All rights reserved

Peter Lorenzen

Technology Manager

WM-data Denmark

a LogicaCMG Company

peloz@wmdata.com

1



Presentation

• Target audience is developers

• Focus is on how to prevent hackers from gaining access

• In terms of what I believe an APEX developer in a small shop ,
without a fulltime security expert or DBA, should know

• More an overview of security threats and countermeasures
than a thorough analysis

• Point you to resources with more information about the different subjects

• Assumption: An application that

– is accessed from the Internet 

– contains valuable and secret information
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APEX Project References

• The Danish Department of Prisons and Probation uses APEX in 
the process of deciding in which facility a client should serve

• RTX Telecom uses APEX to control DECT cordless telephones in 
Rumania

• Naturgas Fyn is a provider of natural gas in Denmark. We have 
developed a system that calculates the amount of gas that is 
needed from each gas provider the following day
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Intro – Security, what security?

A security company estimates that there are a 71% likelihood that a Website 
has a Cross-Site Scripting vulnerability and 20% for a SQL Injection 
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Intro

• Think about security from the beginning of a project

• Plan security – Architecture etc.

• Make sure people knows the security basic

• Have people that is responsible for security, patching etc.
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APEX is secure, developers 
makes it insecure ☺



APEX Components

Architecture

• Oracle 9i/10g/11g Database
• Oracle Express Edition

• Oracle HTTP Server (Database Companion CD)
• Oracle HTTP Server (Oracle Application Server)
• Oracle XML DB HTTP Server

HTTP

server
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There is such a 
thing as too cheap



Architecture

Oracle HTTP Server
(OHS)

Oracle XML DB HTTP Server

Technology Apache 1.3.x Developed by Oracle. Builds 

�

Which HTTP Server to Use?

Technology Apache 1.3.x Developed by Oracle. Builds 
on the Oracle Shared Server 
architecture

Database “connection” mod_plsql Embedded PL/SQL Gateway 
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Use known and 
proven technology



Architecture

Minimum Only HTTP communication

"Security is an architecture, not an appliance” - Art Wittman

mod_proxy
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Proxy HTTP Server

– Standard Apache 1.3/2.0 HTTP Server

– OHS based on an Apache 2.0.x HTTP Server

Database +
HTTP server



Architecture

Using Secure Sockets Layer (SSL) encryption

SSL?

10

Security measures should match the risk 
and the value of the secured application/data

Database +
HTTP server



Hardening the Architecture

• Patch, Patch, Patch

– Critical Patch Update (CPU)

– Oracle Security Alerts

– Remember regular Patch Sets

– The Oracle HTTP Server – Patches from Oracle

– Standard Apache HTTP Servers – Patches from Apache– Standard Apache HTTP Servers – Patches from Apache

– Remember the OS

– Patching can be difficult!
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Patching should be part 
of the daily operations



Hardening the Architecture

• Hardening the Database

– Do not use the free Express Edition (XE) database

• The simple stuff

– Follow the principle of least privilege

– Lock or remove unused users

– Use sensible passwords– Use sensible passwords

– SYS password != SYSTEM password

• Must-reads

– Oracle Database Security Checklist

– “Hacking and Securing Oracle - A Guide To Oracle Security”

by Pete Finnigan

• A good place to start

– Oracles Project Lockdown
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Use checklists and 
adopt best practices



Hardening the Architecture

• Hardening the Apache HTTP Web Server

– Remove pre-loaded modules

– Remove pre-installed content

– Don’t publicize names/versions of your running software

ServerSignature Off   (Removes server information from error pages)

• Comprehensive Checklists

– “Securing Oracle Application Server”

by Caleb Sima

– “Hardening Oracle Application Server 9i and 10g”

by Alexander Kornbrust

ServerSignature Off   (Removes server information from error pages)

ServerTokens Prod    (Removes server version from the HTTP header)
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Give away as little as 
possible about yourself



Specific Threats - Cross-Site Scripting (XSS)

• Simple definition

– Attacker injects JavaScript in an application in order to attack other users

– Ex. Stealing data, Hijacking session token, Performing unauthorized actions

• Many types of XSS

– Stored XSS (JavaScript in database)

– Reflected XSS (Embedded JavaScript in URL request)

– Stored XSS in uploaded files (HTML, Text file with .jpg extension, etc.)

• XSS is often not that dangerous on it’s own, but combined with bugs in a 

browser, a virus or a worm it can be serious 
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Specific Threats - Cross-Site Scripting

• Quick example in APEX

– Create a Form on a table of type “Form on a Table with Report”

– Run the Report and create a row with this data in a VARCHAR2 column

– When you press Create and branch back to the Report the JavaScript is run

Test<script>alert(‘Hello world’);</script>
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– When you press Create and branch back to the Report the JavaScript is run



Specific Threats - Cross-Site Scripting

• Fix: Escape Special characters like <,>,&

• Change Display as

Standard Report Column

Display as text (escape special characters, does not save state)
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Specific Threats - Cross-Site Scripting

• Escaping is the weapon of choice when dealing with XSS threats

• Escape all output

• The page source will now look like this 

• In PL/SQL use this function: HTF.escape_sc

Test&lt;script&gt;alert('Hello world');&lt;/script&gt;

• In PL/SQL use this function: HTF.escape_sc

• Read about safe items in the User’s Guide
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Don’t trust any input from 
the end-user



Specific Threats - SQL Injection

• Definition

– An attacker inputs extra SQL in an application

• Simple example in APEX

– Report based on a SQL Query

select  job, sal from emp where ename = '&P1_ENAME.'

– The P1_ENAME item is input by a user

– If an user input the text below all rows will be shown

– The fix for this specific situation is to use bind variables

qwerty' or 1=1--

select  job, sal from emp where ename = :P1_ENAME
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Specific Threats - SQL Injection

• Take care when an end-user can input text that is used in DML

• Watch out for concatenation of user input in DML

• Take care when using Dynamic SQL

DBMS_SQL
or
Native Dynamic SQL e.g. Execute Immediate

• Validate end-user input:

– Check for max. length

– Check for parentheses, comments (--, /* */)

– Validate the input against a table

Native Dynamic SQL e.g. Execute Immediate
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Always use Bind Variables!



Hardening APEX

• Session State Protection (SSP)

• APEX URL

• APEX URL with SSP checksum

f?p=101:7:2564092426426::::P7_USER_ID:99
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• Use APEX_UTIL.prepare_url to generate checksum from PL/SQL

• SSP should not be the only security measure!

– Also check in the database

• Via triggers

• Via a view layer and instead of triggers

• Virtual Private Database (VPD)

f?p=101:7:2564092426426::::P7_USER_ID:99&cs=38D6164631F9754257F3
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Always use Session State Protection



Hardening APEX

• Security Options in the Administration Services

(Options for you production system)

– Disable Administrator Login

– Disable Workspace Login

– Restrict Access by IP Address

– Workspace Password Policy

• Version 3.1 will contain a Runtime Installation that probably will alleviate 
most of this

• Miscellaneous

– Debugging should be disabled

– Build Status should be Run Application Only

– Workspace Password Policy
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Lock down your production system



Hardening APEX

• Obfuscate the APEX_PUBLIC_USER Password

– Use the dadTool.pl script located in ORACLE_HOME\Apache\modplsql\conf

– If you use marvel.conf rename it temporarily to dads.conf

22



Miscellaneous

• Don’t trust any input from the end-user

– All JavaScript and HTML can be changed

– For examples try the Web Developer or the Firebug Firefox add-on

– Do all validations in the database

Example using the Web Developer Firefox add-on
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Example using the Web Developer Firefox add-on



Secure Sockets Layer (SSL) encryption

• Check How-to’s on the APEX Wiki

– Using SSL with the Oracle HTTP Server

– Using SSL with the Oracle XML DB HTTP Server
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Conclusion

• Security is important

• Don’t think of security only in APEX but for your whole architecture

• Create a sensible architecture

• Use SSL encryption

• Patch everything

• Harden the database and the Apache HTTP Server• Harden the database and the Apache HTTP Server

• Escape output to prevent Cross-Site Scripting

• Validate input to prevent SQL Injection etc.

• Use Session State Protection

• Lock down your production system

• Obfuscate the APEX_PUBLIC_USER password

• Don’t trust JavaScript validations, hidden items, check boxes, etc.
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How to Make Your Oracle APEX Application Secure

Questions?

For More Information

• CPU and Security Alerts
http://tinyurl.com/5dhto

• Oracle Database Security Checklist

Contact Information

Peter Lorenzen
peloz@wmdata.com
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• Oracle Database Security Checklist
http://tinyurl.com/ytake2

• “Hacking and Securing Oracle - A Guide To Oracle Sec urity” by Pete Finnigan
http://tinyurl.com/28jrt7

• Oracles Project Lockdown
http://tinyurl.com/24s4nf

• “Securing Oracle Application Server” by Caleb Sima
http://tinyurl.com/2ey89a

• “Hardening Oracle Application Server 9i and 10g” by  Alexander Kornbrust
http://tinyurl.com/2x5h3h

• APEX Wiki
http://tinyurl.com/2zosrp


